
MOTIVIC DECOMPOSITION FOR RELATIVE
GEOMETRICALLY CELLULAR STACKS

UTSAV CHOUDHURY AND JONATHAN SKOWERA

Abstract. We generalize a motivic decomposition theorem due
to Karpenko to relative geometrically cellular Deligne-Mumford
stacks. Our proof is different from Karpenko’s as it relies on a van-
ishing result of Voevodsky. Even in the classical case, our method
yields a simpler and more conceptual proof of Karpenko’s result.

1. Introduction

Recall that a relative cellular variety is a smooth and proper vari-
ety equipped with an increasing sequence of closed subvarieties whose
successive differences, called cells, are affine fibrations over proper va-
rieties, called bases. By a result of Karpenko [Kar, Corollary 6.11], the
Chow motive of a relative cellular variety decomposes into the direct
sum of the Chow motives of the bases suitably shifted and twisted. In
the case of rational coefficients, this was independently shown by del
Baño [Ban, Theorem 2.4].

In this paper, we introduce a notion of relative cellularity for Deligne-
Mumford stacks and generalize the decomposition of Karpenko. Even
for varieties, our notion of relative cellularity is more general than
the previous one: instead of asking that the fibers of the map from
a cell to its base are affine spaces, we only ask so for the geometric
fibers. We term this property: relative geometrically cellular. The
price to pay for such a generality is that our decomposition holds only
with rational coefficients. Also, we stress that our proof restricted
to varieties simplifies those of Karpenko and del Baño by applying a
vanishing theorem of Voevodsky [Voe2, Corollary 4.2.6]. This vanishing
theorem gives a simpler proof that the relevant Gysin sequence splits.

Remark 1.1. Let k be a field of characteristic zero, fixed throughout.
This is the setting in which the vanishing lemma of Voevodsky (4.1)
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and the result that Chow motives embed in Voevodsky’s category of
motives are only known to hold. If functorial resolution of singulari-
ties were available in positive characteristic, then the arguments stated
here could be extended to Deligne-Mumford stacks over any perfect
field. Even without functorial resolution of singularities, if the pro-
gram mentioned in [Kel, section 1.6] is successful, the results hold in
positive characteristic p = char k with coefficients in Z[1/p].

Remark 1.2. In what follows, arguments about motives of Deligne-
Mumford stacks in DMeff

ét (k,Z) remain true in DMeff(k,Q).

Acknowledgements. We warmly thank A. Kresch for reading a first
draft of this paper, and J. Ayoub for his valuable suggestions and
helpful hints.

2. Quick review of motives

Let R be a commutative ring. As usual, we denote by DMeff(k,R)
the triangulated category of effective motives with coefficients in R
and by DMeff

ét (k,R) its étale version, i.e., where the Nisnevich topol-
ogy is replaced by the stronger étale topology. These categories are
constructed in [MVW, Definitions 9.2 and 14.1]. When R is a Q-
algebra, there is a canonical equivalence of triangulated categories
DMeff(k,R) ∼= DMeff

ét (k,R) (cf. [MVW, Theorem 19.30]).
Let SmCor(k) be the additive category of finite correspondences.

Recall that the objects of SmCor(k) are all smooth k-schemes and
that the morphisms between two smooth k-schemes X and Y are given
by the free abelian group Cor(X, Y ) generated by the integral closed
subschemes W ⊂ X × Y that are finite and surjective on a connected
component of X. Presheaves with transfers are contravariant, additive
functors from SmCor(k) to the category of R-modules. They form an
abelian category denoted by PST (k,R). For a smooth k-scheme X, the
presheaf with transfers Rtr(X) is given by Y ∈ Sm/k 7→ Cor(Y,X)⊗R.

Objects of DMeff(k,R) (resp. DMeff
ét (k,R)) are just complexes of

presheaves with transfers. However, in this triangulated category there
are more isomorphisms than in the derived category of PST (k,R).
Indeed, a morphism f : K ′ → K between complexes of presheaves
with transfers is invertible in DMeff(k,R) (resp. DMeff

ét (k,R)) if it
induces quasi-isomorphisms on the stalks for the Nisnevich (resp. étale)
topology. Also, for every smooth k-scheme X, the map Rtr(A

1×X)→
Rtr(X) is invertible in DMeff(k,R) (resp. DMeff

ét (k,R)). The motive
of a smooth k-scheme X, denoted M(X), is the sheaf Rtr(X) viewed

as an object of DMeff(k,R) (resp. DMeff
ét (k,R)).
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Since k has characteristic zero, there exists a fully faithful func-
tor ι : Cheff(k,R) → DMeff(k,R) [MVW, Proposition 20.1], where
Cheff(k,R) is the category of effective Chow motives with coefficients
in R. A motive M ∈ DMeff(k,R) is called a Chow motive if it is in
the essential image of ι.

Let F be a smooth and separated Deligne-Mumford stack over the
field k. One can associate to F a motive M(F ) ∈ DMeff(k,Q) (see
[Ch, Definition 2.7]). This motive can be described as follows. Let

U → F be an étale atlas and consider the associated C̆ech simplicial
scheme U• formed from the (i+ 1)-fold products Ui = U ×F · · · ×F U .
Relative diagonals and partial projections serve as the face and degen-
eracy maps. This simplicial scheme determines a complex of presheaves
with transfers N(Qtr(U•)) and hence an object M(U•) of DMeff(k,Q).
(Here N(−) is the “normalized chain complex” associated to a sim-
plicial group; see [GJ, p. 145].) Then, by [Ch, Corollary 2.14], there
is a canonical isomorphism M(U•) ∼= M(F ) in DMeff(k,Q). Sim-
ilarly, for any coefficient ring R, one can associate to F a motive
M(F ) ∈ DMeff

ét (k,R). By [Ch, Corollary 4.7], it is known that M(F ) is
a direct factor of the motive of a smooth and quasi-projective k-scheme
in DMeff(k,Q).

3. Affine fibrations

The results on cellular stacks follow in part from the observation
that the motive of the total space of a geometric affine fibration is
isomorphic to the motive of the base space. The proof proceeds first
through the case of schemes.

In this section, the base field k may be a perfect field of any charac-
teristic.

Lemma 3.1 (Homotopy invariance). Let X be a smooth k-scheme and
let p : Y → X be a geometric affine fibration, i.e., a flat morphism
whose geometric fibers are affine spaces. Then M(Y ) ∼= M(X) in

DMeff
ét (k,Z). If moreover all fibers of p are affine spaces, then the

isomorphism additionally holds in DMeff(k,Z).

Remark 3.1. Under the stronger of the two hypotheses, this lemma
generalizes work of Chernousov, Gille, and Merkurjev for varieties
[CGM][Theorem 7.2]. We could not find any proof of the stated lemma
in the literature, so we include it here.

Proof. Examining the restrictions of the morphism to each connected
component, the smooth scheme X may be assumed to be irreducible.
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Let n be the relative dimension of p. The smooth scheme X can be
filtered by open subschemes,

∅ = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = X,

such that for all i, Wi := Vi \ Vi−1 is smooth, and there is a pullback
square of the form,

An
Ui

//

ét
����

Ui

ét
����

p−1(Wi) // Wi

such that the vertical morphisms are étale and surjective. Indeed, the
hypothesis applied to the generic point of X shows that there exists an
étale morphism u1 : U1 → X such that Y ×X U1

∼= An
U1

. If u1 is not
surjective, this process may be continued inductively as follows.

Let V1 be the image of u1, and let Z1 = X \ V1 be its complement.
The field k being of characteristic zero, Z1 is generically smooth. It
has a dense, smooth subscheme W2 ⊂ Z1 which is the image of an étale
morphism u2 : U2 → Z1 trivializing the affine bundle, i.e., Y ×X U2

∼=
An

U2
. Let V2 := V1 ∪W2. Since codimX(V2 \ V1) < codimX(V1 \ V0),

this process terminates in the promised filtration of X.
We use induction on i to show that M(Vi) ∼= M(p−1(Vi)) for all i.

The case i = 1 follows from the observation that M(V1) ∼= M((U1)•)

and M(p−1(V1)) ∼= M(p−1(V1)×V1 (U1)•) where (U1)• is the C̆ech sim-
plicial schemes associated to the étale cover U1 → V1. In each sim-
plicial degree, p−1(V1) ×V1 (U1)• is isomorphic to An × (U1)•. Hence
the canonical morphism, Ztr(p

−1(V1)×V1 (U1)•)→ Ztr((U1)•), induces
an A1-weak equivalence in each simplicial degree. This proves that
M(V1) ∼= M(p−1(V1)) in DMeff

ét (k,Z).
For general i, we use the Gysin triangle from [Voe2, Proposition 3.5.4]

(for the étale version of the Gysin triangle, one can use the fact that

the canonical functor σ : DMeff(k,Z)→ DMeff
ét (k,Z) is a triangulated

functor by [MVW, Remark 14.3]). The required isomorphism then
follows from the morphism of triangles,

M(p−1(Vi−1)) //

o
��

M(p−1(Vi)) //

��

M(p−1(Wi))(ci)[2ci]

o
��

M(Vi−1) // M(Vi) // M(Wi)(ci)[2ci]

where ci := codimVi
Wi. �

Remark 3.2. For the Nisnevich topology, we have assumed that all
fibers are affine. It is not even known whether the lemma holds upon
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restricting the hypothesis to geometric fibers when p is geometrically
an A3-fibration over a point (see [Kra, Remark 4]).

Corollary 3.2. Let p : F ′ → F be a smooth, representable morphism
of smooth Deligne-Mumford stacks such that the geometric fibers are
affine spaces. Then M(F ′) ∼= M(F ) in DMeff

ét (k,Z).

Proof. Fixing an atlas U → F , let V = U ×F F
′ → F ′ be the induced

atlas for F ′. Let U• and V• be the associated C̆ech simplicial schemes.
There is a natural morphism V• → U•, and in each simplicial degree i,
Vi → Ui is a geometric affine fibration. It follows that the morphism
Ztr(V•)→ Ztr(U•) is an A1-weak equivalence in each simplicial degree.
This shows that M(p) : M(F ′)→M(F ) is an isomorphism. �

4. Motivic decompositions

Remark 4.1. In this section all the results for schemes depends on
whether resolution of singularities are available over k. For stacks we
need functorial resolution of singularities.

Our motivic decomposition theorem is based on the following lemma
which is essentially due to Voevodsky.

Lemma 4.1. Let X, Y ∈ Sm/k, such that X is proper. Then

HomDMeff(k,Z)(M(Y )(c)[2c],M(X)[1]) = 0.

Proof. When Y is proper, this is [Voe2, Corollary. 4.2.6]. We follow the
same argument here. Let d = dim(X). Since X is proper, by [MVW,
Example 20.11] we have

Hom(M(X),Z(d)[2d]) ∼= M(X).

Hence, by [MVW, Proposition 14.16 and Theorem 19.3]

HomDMeff(k,Z)(M(Y )(c)[2c],M(X)[1]) = H
2(d−c)+1
M (Y ×X, d− c)

= 0,

whereHp
M(−, q) is motivic cohomology in degree p and weight q (cf. [MVW,

Definition 3.4]). �

Proposition 4.2. Let F be a smooth Deligne-Mumford stack and let
Z ⊂ F be a smooth and closed substack of codimension c. Assume
that M(F \ Z) is a Chow motive. Then there is an isomorphism in
DMeff(k,Q),

M(F ) ∼= M(Z)(c)[2c]⊕M(F \ Z).

If F is a scheme, then the isomorphism holds in DMeff(k,Z).
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Proof. By [Ch, Lemma 3.9], there is an exact triangle,

M(F \ Z)→M(F )→M(Z)(c)[2c]→M(F \ Z)[1].

To prove this triangle splits, it suffices to show that

HomDMeff(k,Q)(M(Z)(c)[2c],M(F \ Z)[1]) = 0.

This follows from Lemma 4.1, since M(F \ Z) is a Chow motive and
M(Z) is a direct factor of M(Y ) for some smooth k-scheme Y (cf. [Ch,
Corollary 4.7]). �

Remark 4.2. Keeping the notation as in Proposition 4.2, let Xi be
a smooth and proper Deligne-Mumford stack of pure dimension di for
1 ≤ i ≤ n, and let σi ∈ Chci((F \ Z) ×Xi) be a cycle of codimension
ci. Since each Xi is proper, each cycle σi induces a morphism

σi : M(F \ Z)→M(Xi)(ci − di)[2(ci − di)]

in DMeff(k,Q) by [Ch, Lemma 4.4] and [J]. Furthermore, assume that
the morphism

∪iσi : M(F \ Z)→
n⊕

i=1

M(Xi)(ci − di)[2(ci − di)]

is an isomorphism in DMeff(k,Q).
To give an isomorphism as in Proposition 4.2, it is enough to give

a splitting of the morphism ι : M(F \ Z) → M(F ). Hence, we need
to find cycles σ′i ∈ Chci(F × Xi), such that σ′i ◦ ι = σi. The Zariski
closures σ′i := σi of σi in F ×Xi will suffice and induce an isomorphism,

(∪iσ′i)∪σZ : M(F )→

(
n⊕

i=1

M(Xi)(ci − di)[2(ci − di)]

)
⊕M(Z)(c)[2c],

where σZ ∈ Chc+dim(Z)(F × Z) is the graph of the inclusion Z ⊂ F .

Definition 4.3. A Chow cellular Deligne-Mumford stack is a smooth
Deligne-Mumford stack F endowed with a finite increasing filtration by
closed (not necessarily smooth) substacks,

∅ = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = F,

such that the successive differences Fi\i−1 = Fi \ Fi−1, called cells, are
smooth of pure codimension in F , and have Chow motives for motives.

On the other hand, if each cell Fi\i−1 admits a geometric affine fibra-
tion Fi\i−1 → Yi to a smooth, proper Deligne-Mumford stack Yi, called
the base of Fi\i−1, then the stack F is said to be relative geometrically
cellular. (Compare with [Kar, Definition 6.1]).
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Remark 4.3. Relative geometrically cellular Deligne-Mumford stacks
are also Chow cellular. Indeed, by Corollary 3.2, we have M(Fi\i−1) ∼=
M(Yi) for all i and the M(Yi)’s are Chow motives by [Ch, Theorem
3.9].

Proposition 4.4. Let F be a Chow cellular Deligne-Mumford stack.
Then there is an isomorphism,

M(F ) ∼=
n⊕

i=0

M(Fi\i−1)(ci)[2ci],

in DMeff(k,Q) where ci = codimF (Fi\i−1). If F is a scheme, the

isomorphism holds in DMeff(k, Z).

Proof. The proof proceeds by descending induction on i applied to the
hypothesis that

M(F \ Fi) ∼=
n⊕

j=i+1

M(Fj\j−1)(cj)[2cj].

The result will then follow upon reaching i = −1.
For i = n−1, there is nothing to prove. Now let the result be known

for i + 1 ≤ n − 1. As the motive M(Fi+1\i) is Chow by assumption,
Proposition 4.2 gives an isomorphism

M(F \ Fi) 'M(F \ Fi+1)⊕M(Fi+1\i)(ci)[2ci].

The conclusion follows by the induction hypothesis. �

Corollary 4.5. Let F be a relative geometrically cellular stack, retain-
ing the above notation. Then there is an isomorphism,

M(F ) ∼=
n⊕

i=0

M(Yi)(ci)[2ci],

where ci = codimF (Fi\i−1).

Proof. The proof follows from Remark 4.3 and Proposition 4.4. �

Remark 4.4. The isomorphism in Corollary 4.5 is induced by the
correspondences Γi ∈ Chci+dim(Yi)(F × Yi), where Γi ⊂ F × Yi is the
closure of the graph of the morphism Fi\i−1 → Yi inside F × Yi. This
follows from Remark 4.2 and the proof of Proposition 4.4.

Remark 4.5. Everything in this section works integrally in the clas-
sical case of relative cellular varieties. Hence, it yields a new proof of
Karpenko’s decomposition theorem [Kar, Corollary 6.11].
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Example 4.1. Let X be a smooth and proper Deligne-Mumford stack
over an algebraically closed field k of characteristic zero equipped with
an action of the multiplicative group Gm. Such an action requires the
data of an action map as well as two coherent 2-isomorphisms making
relevant diagrams commute [R]. If the coarse moduli space of X is a
scheme, then X admits a Bia lynicki-Birula decomposition [Sko]. More
precisely, if F =

∐
i Fi is the decomposition into connected components

of the fixed point locus of the action of Gm, then X decomposes into a
disjoint union of locally closed substacks Xi which are Gm-equivariant
affine fibrations over the Fi’s. It follows that the Chow motive of X in
DMeff(k,Q) decomposes as follows

M(X) ∼=
⊕
i

M(Fi)(ci)[2ci]

where ci = codimX(Xi). For example, this gives decompositions of the
motives of spaces of stable maps to Pn [O] and the moduli space of
stable quotients [C].
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