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Abstract. This short note considers the Bia lynicki-Birula de-
composition of Deligne-Mumford stacks under one-dimensional torus
actions and extends a result of Oprea.

1. Introduction

In this short note, we consider actions of one-dimensional tori on
tame Deligne-Mumford stacks which are smooth and proper over an
algebraically closed field. We extend a result of Oprea [Opr06] to show
that in the aforementioned case, if the stack has a scheme for a coarse
moduli space, or if it is toric, then it admits a Bia lynicki-Birula de-
composition and often a corresponding decomposition of cohomology.
A history of the result can be found in [Bro05, Theorem 3.2].
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2. Notation and terminology

Let k be an algebraically closed field of arbitrary characteristic, fixed
in what follows.

In this note, an algebraic stack will be a stack X fibered over (Sch/k)
in the étale topology, such that the diagonal mapping ∆ : X → X×X is
representable, separated and quasi-compact, and such that there exists
a smooth, surjective k-morphism U → X from a k-scheme U , which
will be called an atlas. Deligne-Mumford stacks are those admitting
étale atlases. Proper Deligne-Mumford stacks are those admitting a
finite, surjective morphism from a proper k-scheme. Tame Deligne-
Mumford stacks are those with linearly reductive geometric stabilizer
groups.

An affine fibration is a flat morphism p : E → X which is étale
locally a trivial bundle of affine spaces. This definition weakens the
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definition of a vector bundle by relaxing the requirement that the tran-
sition functions be linear.

Let T be a one-dimensional torus over k with an isomorphism to
Gm. Let the fixed points of an action of T on a stack X be denoted by
XT [Rom05].

If an algebraic stack has the form of a quotient [X/G] of a normal
toric variety X over an algebraically closed field of characteristic zero
by a subgroup G of the torus of X, then it is called a toric stack [GS11].

3. Bia lynicki-Birula decomposition of Deligne-Mumford
stacks

Oprea proved a form of the Bia lynicki-Birula decomposition [BB73]
for Deligne-Mumford stacks assuming there exists a T -equivariant, affine,
étale atlas [Opr06, Proposition 5].

Proposition 3.1 (Oprea). Let X be a smooth, proper Deligne-Mumford
stack over an algebraically closed field k with a T -action that admits
a T -equivariant, affine, étale atlas U → X. Let F =

∐
i Fi be the

decomposition of the fixed substack into connected components. Then
X decomposes into disjoint, locally closed, T -equivariant substacks Xi

which are T -equivariant affine fibrations over Fi.

Oprea expected the existence of an atlas to be a general fact [Opr06,
Section 2]. Here we show that the desired atlas exists under somewhat
general conditions.

Proposition 3.2. Let X be a tame, irreducible Deligne-Mumford stack,
smooth and proper over k, whose generic stabilizer is trivial and whose
coarse moduli space is a scheme. Furthermore, let an action of T on X
be given such that T acts trivially on its fixed locus. Then there exists
a T -equivariant, affine, étale atlas U → X.

Remark 3.3. If an algebraic group G acts algebraically on a Deligne-
Mumford stack X, then the action descends to the coarse moduli space
of X by the universal property of the coarse moduli space of G×k X.

Remark 3.4. If T does not act trivially on its fixed locus, it can be
made to do so by a reparametrization of the action. Since T -invariance
is not affected by this change, the decomposition for the new action
will be a decomposition for the original action.

Proof. Since X is reduced and irreducible with a scheme for a coarse
moduli space, the Keel-Mori theorem [KM97, Proposition 4.2] shows
the coarse moduli space is in fact a normal, proper variety over k. It
inherits a T -action by the remark 3.3. Since it is proper, any collection
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of open, T -invariant neighborhoods containing the fixed point locus
covers it and contains a finite subcover. They can be chosen affine
by Sumihiro’s theorem [Sum74, Corollary 2]. So it suffices to find the
desired atlas for an arbitrary fixed k-point x ∈ X. To this end, let Y
be the pullback of X to an open, affine, T -invariant neighborhood of
the image of x in the coarse moduli space.

Consider the frame bundle of Y with total space FY . Each k-point
y ∈ Y lies in the image of an étale, representable morphism from a
quotient stack of the form [U/G] for an affine, irreducible scheme U with
an action of the stabilizer group G of y and containing a point u fixed by
the G-action and mapping to y [KM97]. By the tameness hypothesis,
G is linearly reductive. Since Y has trivial generic stabilizer, G acts
faithfully on U . Applying [BB73, Theorem 2.4] to U and TuU shows
that G acts faithfully on TyY . So the total space FY is an algebraic
space, and Y = [FY/GLn], where n is the dimension of X. But Y has
an affine coarse moduli space, so FY is, in fact, an affine scheme (cf.
[EHKV01, Remark 4.3]).

The action of T on Y induces an action on TY and hence an action on
FY , which is an open, T -invariant substack of TY ⊕n. Let p : FY → Y
be the projection. An atlas will be defined by finding a T -equivariant
étale slice U ↪→ FY over the fixed point y.

One may assume a fixed point f ∈ FY lies over y by modifying
the action as follows. Choose a basis of the tangent space TyY which
diagonalizes the T -action, i.e., so t : (v1, . . . , vn) 7→ (ta1v1, . . . , t

anvn).
Then the induced T n-action on FY can be used to define a twisted
T -action on FY by

T → T n

t 7→ (t−a1 , . . . , t−an).

The projection from the frame bundle remains T -equivariant after
twisting the action, but now the action fixes the frame f formed by
the basis vectors.

The proof finishes by arguing as in [Opr06, Lemma 3]. The torus T
acts on the tangent space TfFY at f , with TfFY → TyY surjective and
T -equivariant. By the linear reductivity of T , TyY may be identified
with some T -invariant subspace N ⊂ TyFY , compatibly with the T -
actions. By a theorem of Bia lynicki-Birula [BB73, Theorem 2.1], there
exists a reduced and irreducible, closed, T -invariant subscheme Z of
FY containing f as a non-singular point such that TfZ = N .

Taking U to be the largest open subscheme of Z on which the restric-
tion of p is étale ensures that U is T -invariant. By applying Sumihiro’s
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theorem again, one may shrink U to an affine, T -invariant neighbor-
hood of f whose image in Y contains y. �

Theorem 3.5. Let X be a tame Deligne-Mumford stack, smooth and
proper over k, whose coarse moduli space is a scheme, and let an action
of T on X be given. Then X admits a Bia lynicki-Birula decomposition.

Proof. One first reduces to the case that X is irreducible by decom-
posing each irreducible component separately and combining to give
a decomposition of all of X. Applying Remark 3.4, one may suppose
T acts trivially on its fixed locus. By [Ols07, Proposition 2.1], there
exists a rigidification X of X which has trivial generic stabilizer. In
particular, there is an étale, proper morphism X → X which forms a
G-gerbe for a finite group G. The T -action descends to X using the
universal property of rigidification, so Proposition 3.2 guarantees the
existence of a T -equivariant, affine, étale atlas of X. Let the substacks
F i and X i, together with T -equivariant affine fibrations X i → F i, be
defined according to Proposition 3.1.

Let the decomposition of X be defined by pulling back along X → X.
Pulling back again by the affine fibration X i → F i forms the diagram:

X i ×F i
Fi

��

// Fi
//

��

Xi
//

��

X

��
X i

// F i
// X i

// X

.

(3.1)

So F =
∐

i Fi is a decomposition of the fixed substack into connected
components [Rom05]. Furthermore, all morphisms are T -equivariant.

In what follows, let i be fixed. It remains to prove the existence of an
affine fibration, and diagram (3.1) shows it will suffice to supply a T -
equivariant isomorphism X i×F i

Fi → Xi over X i. This can be done by
specifying such an isomorphism, unique up to canonical 2-isomorphism,
over an étale, T -equivariant atlas of X i, and then applying the descent
property of the stack HomXi

(X i ×F i
Fi, Xi) [Ols06].

First, étale, T -equivariant atlases forming the following pullback will
be defined:

W //

��

P

��

X i
// F i

(3.2)

There is an Out(G)-torsor on F i associated to the rigidification gerbe
Fi → F i whose class α lies in H1(F i,Out(G)). Base change to the
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total space of the torsor trivializes α and gives an element of the étale
cohomology β ∈ H2(F i, Z) which classifies the gerbe, where Z is the
center of G (cf. [EHKV01, Section 3.1]). Let P → F i be an affine, étale
atlas that trivializes α, β, and the affine fibration X i → F i. Also, let
W := P ×F i

X i, as in diagram (3.2).
By the Künneth formula for the algebraic fundamental group [Ray71,

Proposition 4.6], the atlas W trivializes the Out(G)-torsor associated
to the gerbe Xi → X i. Then [Art73, Corollary 2.2] shows that the

morphism P ×An ∼= W → P induces an isomorphism H2(P,Z)
∼−→

H2(W,Z), implying that the classifying element of Xi ×Xi
W → W

vanishes. The isomorphism Xi ×Xi
W

∼−→ Fi ×F i
W of trivial gerbes

can be chosen, uniquely up to canonical 2-isomorphism, to be the iso-
morphism over W which extends the identity morphism of Fi ×F i

P
over P . This follows from the triviality of the affine fibration W → P
and the Künneth formula. The isomorphism will also be T -equivariant
by similar reasoning, since the identity is T -equivariant. �

Remark 3.6. If X is a tame Deligne-Mumford stack, smooth and proper
over k, with a projective coarse moduli space and a T -action, then
the induced decomposition forms a filtration, and a lemma of Oprea
[Opr06, Lemma 6] implies that the Betti numbers of the stack are
calculated by the Betti numbers of the fixed points.

In what follows, T may be a torus of arbitrary dimension.

Proposition 3.7. Let char k = 0, and let X be a normal algebraic
space, separated and of finite type over k, with an action of T which
gives a dense, open embedding of T in X. Then X is a scheme, and
hence a toric variety.

Proof. First, let k = C. The scheme locus of the normalized blow-up at
the closure of any non-dense T -orbit forms a toric variety whose image
includes the orbit. The associated fans give, in each T -orbit, a limit
point of a Gm-orbit of 1 ∈ T ↪→ X for a subtorus Gm of T . Then X
is a finite union of T -orbits of such points and hence a scheme [Hau00,
Theorem 1].

For general k, one may immediately reduce to the case that k is
a subfield of C. The pullback of X to C is a toric variety [Hau00],
so a theorem [GS11, Theorem 6.1] implies there exists an étale, rep-
resentable, surjective morphism p : [U/GLn] → [XC/T ] where U
is a quasi-affine scheme over C. Let L ⊂ C be a subfield of def-
inition of p which is finitely generated over k, giving a morphism
pL : [UL/GLn] → [XL/T ] where U is obtained by pulling back UL
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to C. Then d = tr deg L/k < ∞, and pL remains étale, repre-
sentable and surjective. Writing L = k(V ) for a d-dimensional affine
variety V , one may suppose that UL with its GLn-action is defined
over V , realizing pL as the pullback of a dominant, étale morphism
pV : [UV /GLn] → [X/T ] × V to the generic point of V . After ex-
cluding points of U lying in the image of the pullback of the relative
inertia, pV becomes representable. The disjoint union of fibers of pV
over finitely many closed points of V forms an étale, representable, sur-
jective morphism to [X/T ]. Applying [GS11] in the reverse direction,
one deduces that X is a toric algebraic space and hence a scheme. �

Theorem 3.8. Assume char k = 0, and let X be a Deligne-Mumford
stack, smooth and proper over k, with an action of T which gives a
dense, open embedding of T in X. Then the induced action of any one-
dimensional subtorus of T induces a Bia lynicki-Birula decomposition
of X.

Proof. By remark 3.3, the action of T on X descends to the coarse
moduli space. The theorem now follows from the two previous results.

�
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